Prime-like Elements and Semi-direct Products in Commutative Banach Algebras

نویسنده

  • Marc P. Thomas
چکیده

We develop results which show that elements in the radical of a commutative Banach algebra are often precluded from having prime-like properties if we avoid certain exceptional situations involving torsion elements. This makes the proof of the Singer-Wermer conjecture conceptually much clearer. It also motivates the de nition of an element having regular powers and allows us to strengthen our previous results concerning necessary conditions for a commutative Banach algebra A to be the semidirect product of some subalgebra together with a speci ed principal ideal sA, or, equivalently, concerning necessary conditions for there to be an algebraic splitting of the short exact sequence 0! sA !A! (A=sA)! 0 for some given element s in A. In particular, we show that if A is a radical Banach algebra and s has regular powers then no such splitting is possible. x1. Background and Notation. This paper continues an investigation of the structure of the radical of a commutative Banach algebra which was pioneered by G. R. Allan [ 1 ] and J. Esterle [ 6 ], and which the author continued in [ 11 ] and [ 12 ]. Our attempt here is both to unify some of the existing results by focusing our attention on non-nilpotent elements with prime-like properties in the radical, and to improve existing theorems, such as those in [ 12 ]. Our main theorem is Theorem 4.1 in Section 4; this section also contains some interesting examples. We need to make some de nitions and explain our notation. Let A denote a commutative algebra over the complex eld. For the following de nitions no topology is needed, but we will eventually specialize to the case where A is a commutative Banach algebra. We will use the terms subspace, subalgebra, ideal, and homomorphism in the algebraic sense, i.e. even if there is a topology on the algebra, we y The author would like to thank NSERC and the department of Mathematics at the University of Manitoba for support in writing this paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Principal Ideals and Semi-direct Products in Commutative Banach Algebras

We prove necessary conditions for a commutative Banach algebra to be the semidirect product of some subalgebra together with a speci ed principal ideal. x

متن کامل

Abstract structure of partial function $*$-algebras over semi-direct product of locally compact groups

This article presents a unified approach to the abstract notions of partial convolution and involution in $L^p$-function spaces over semi-direct product of locally compact groups. Let $H$ and $K$ be locally compact groups and $tau:Hto Aut(K)$ be a continuous homomorphism.  Let $G_tau=Hltimes_tau K$ be the semi-direct product of $H$ and $K$ with respect to $tau$. We define left and right $tau$-c...

متن کامل

Module-Amenability on Module Extension Banach Algebras

Let $A$ be a Banach algebra and $E$ be a Banach $A$-bimodule then $S = A oplus E$, the $l^1$-direct sum of $A$ and $E$ becomes a module extension Banach algebra when equipped with the algebras product $(a,x).(a^prime,x^prime)= (aa^prime, a.x^prime+ x.a^prime)$. In this paper, we investigate $triangle$-amenability for these Banach algebras and we show that for discrete inverse semigroup $S$ with...

متن کامل

Multiplication operators on Banach modules over spectrally separable algebras

‎Let $mathcal{A}$ be a commutative Banach algebra and $mathscr{X}$ be a left Banach $mathcal{A}$-module‎. ‎We study the set‎ ‎${rm Dec}_{mathcal{A}}(mathscr{X})$ of all elements in $mathcal{A}$ which induce a decomposable multiplication operator on $mathscr{X}$‎. ‎In the case $mathscr{X}=mathcal{A}$‎, ‎${rm Dec}_{mathcal{A}}(mathcal{A})$ is the well-known Apostol algebra of $mathcal{A}$‎. ‎We s...

متن کامل

Derivations in semiprime rings and Banach algebras

Let $R$ be a 2-torsion free semiprime ring with extended centroid $C$, $U$ the Utumi quotient ring of $R$ and $m,n>0$ are fixed integers. We show that if $R$ admits derivation $d$ such that $b[[d(x), x]_n,[y,d(y)]_m]=0$ for all $x,yin R$ where $0neq bin R$, then there exists a central idempotent element $e$ of $U$ such that $eU$ is commutative ring and $d$ induce a zero derivation on $(1-e)U$. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001